Cambridge
International
AS \& A Level

Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

## PHYSICS

9702/42
Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

## Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - May/June 2016 | 9702 | 42 |

1 (a) (i) gravitational force provides/is the centripetal force
same gravitational force (by Newton III)
(ii) $\omega=2 \pi / T$

$$
\begin{aligned}
& =2 \pi /(4.0 \times 365 \times 24 \times 3600) \\
& =5.0(4.98) \times 10^{-8} \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

C1
A1
[2]
(b) (i) (centripetal force $=) M_{A} d \omega^{2}=M_{B}\left(2.8 \times 10^{8}-d\right) \omega^{2}$
or
$M_{A} d_{\mathrm{A}}=M_{B} d_{B}$
C1
$M_{\mathrm{A}} / M_{\mathrm{B}}=3.0=\left(2.8 \times 10^{8}-d\right) / d$
$d=7.0 \times 10^{7} \mathrm{~km}$
A1
(ii) $G M_{A} M_{B} /\left(2.8 \times 10^{11}\right)^{2}=M_{A} d \omega^{2}$

B1

$$
\begin{aligned}
M_{B} & =\left(2.8 \times 10^{11}\right)^{2} \times d \omega^{2} / G \\
& =\left(2.8 \times 10^{11}\right)^{2} \times\left(7.0 \times 10^{10}\right) \times\left(4.98 \times 10^{-8}\right)^{2} /\left(6.67 \times 10^{-11}\right) \\
& =2.0 \times 10^{29} \mathrm{~kg}
\end{aligned}
$$

2 (a) (i) number of atoms/nuclei in 12 g of carbon-12
(ii) amount of substance M1
containing $N_{\mathrm{A}}$ (or $6.02 \times 10^{23}$ ) particles/molecules/atoms
or
which contains the same number of particles/atoms/molecules as there are atoms in 12 g of carbon-12
(b) $p V=n R T$
$2.0 \times 10^{7} \times 1.8 \times 10^{4} \times 10^{-6}=n \times 8.31 \times 290$, so $n=149 \mathrm{~mol}$ or 150 mol
(c) (i) $V$ and $T$ constant and so pressure reduced by $5.0 \%$
pressure $=0.95 \times 2.0 \times 10^{7}$
or
calculation of new $n(=142.5 \mathrm{~mol})$ and correct substitution into $p V=n R T$
pressure $=1.9 \times 10^{7} \mathrm{~Pa}$
A1

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - May/June 2016 | 9702 | 42 |

(ii) loss is $5 / 100 \times 150 \mathrm{~mol}=7.5 \mathrm{~mol}$
or
$\Delta N=4.52 \times 10^{24}$
C1

$$
\begin{align*}
& t=\left(7.5 \times 6.02 \times 10^{23}\right) / 1.5 \times 10^{19} \\
& \text { or } \\
& t=4.52 \times 10^{24} / 1.5 \times 10^{19} \\
& =3.0 \times 10^{5} \mathrm{~s} \tag{3}
\end{align*}
$$

C1
A1

3 (a) no net energy transfer between the bodies or bodies are at the same temperature
(b) (i) thermocouple, platinum/metal resistance thermometer, pyrometer B1
(ii) thermistor, thermocouple
(c) (i) change $=11.5 \mathrm{~K}$
(ii) final temperature $=311.2 \mathrm{~K}$

4 (a) (i) $T=0.60 \mathrm{~s}$ and $\omega=2 \pi / T$
C1

$$
\omega=10(10.47) \mathrm{rad} \mathrm{~s}^{-1}
$$

(ii) energy $=1 / 2 m \omega^{2} x_{0}{ }^{2}$ or $1 / 2 m v^{2}$ and $v=\omega x_{0}$

$$
\begin{aligned}
& =1 / 2 \times 120 \times 10^{-3} \times(10.5)^{2} \times\left(2.0 \times 10^{-2}\right)^{2} \\
& =2.6 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

(b) sketch: smooth curve in correct directions B1
peak at $f$ M1
amplitude never zero and line extends from $0.7 f$ to $1.3 f$
(c) sketch: peaked line always below a peaked line A

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - May/June 2016 | 9702 | 42 |

5 (a) amplitude of the carrier wave varies
in synchrony with displacement of the information/audio signal
A1
(b) (i) 10 kHz
(ii) 5 kHz

A1
(c) (i) $24=10 \lg \left(P_{\text {MIN }} /\left\{5.0 \times 10^{-13}\right\}\right)$ C1

$$
P_{\text {MIN }}=1.3(1.26) \times 10^{-10} \mathrm{~W}
$$

(ii) $45 \times 2=10 \lg \left(\left\{500 \times 10^{-3}\right\} / P\right)$
$P=5.0 \times 10^{-10}(\mathrm{~W}) \quad$ M1
$P>P_{\text {MIN }}$ so yes A1
or
maximum attenuation calculated to be 96 (dB)
$96 \mathrm{~dB}>2 \times 45 \mathrm{~dB}$ so yes
or
maximum length of wire calculated to be 48 (km)
actual length $45 \mathrm{~km}<48 \mathrm{~km}$ so yes
or
maximum attenuation per unit length calculated to be $2.2 \mathrm{~dB} \mathrm{~km}^{-1}$

6 (a) lines perpendicular to surface
or
lines are radial
lines appear to come from centre
(b) (i) $F_{\mathrm{E}}=\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi \varepsilon_{0} x^{2}$
$F_{G}=G \times\left(1.67 \times 10^{-27}\right)^{2} / x^{2}$

$$
\begin{aligned}
F_{\mathrm{E}} / F_{\mathrm{G}} & =\left(1.6 \times 10^{-19}\right)^{2} \times\left(8.99 \times 10^{9}\right) /\left[\left(1.67 \times 10^{-27}\right)^{2} \times\left(6.67 \times 10^{-11}\right)\right] \\
& =1.2(1.24) \times 10^{36}
\end{aligned}
$$

(ii) $F_{E} \gg F_{G}$

7 (a) e.g. storing energy
blocking d.c.
in oscillator circuits
in tuning circuits
in timing circuits
any two
(b) (i) $1 / 6+1 / C+1 / C=1 / 4$ C1

$$
C=24 \mu \mathrm{~F}
$$

A1
(ii) $Q=C V$
$=4.0 \times 10^{-6} \times 12 \quad \mathrm{C} 1$
$=48 \mu \mathrm{C}$
A1
(iii) 1. $48 \mu \mathrm{C}$ A1
2. $24 \mu \mathrm{C}$ A1

8 (a) (i) gain = voltage output/voltage input B1
(ii) changes in $V_{\text {OUT }}$ M1
occur immediately when $V_{\mathbb{I N}}$ changes A1
or
changes in $V_{\mathbb{I N}}$
result in immediate changes to $V_{\text {OUT }}$
(b) $12=1+R /\left(1.5 \times 10^{3}\right) \quad \mathrm{C} 1$
$R=16.5 \mathrm{k} \Omega$
A1
(c) straight line from $(0,0)$ to $\left(0.75 t_{1}, 9.0 \mathrm{~V}\right) \quad \mathrm{B} 1$
horizontal line from endpoint of straight line to $t_{1}$
B1
+9 V to -9 V (or $v . v$. ) at $t_{1}$ B1
correct line to $t_{2}$ B1
$R=16.5 \mathrm{k} \Omega \quad$ A1

| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - May/June 2016 | 9702 | 42 |

9 (a) (i) number density of charge carriers/free electrons
or number per unit volume of charge carriers/free electronsB1
(ii) PX or QY or RZ ..... B1
(b) (i) $V_{H}$ is inversely proportional to $n$ ..... B1
for semiconductors, $n$ is (much) smaller than for metals ..... B1
(ii) magnetic field would deflect holes and electrons in same direction ..... B1
(because) electrons are (-)ve, holes are (+)ve ..... M1
so $V_{H}$ has opposite polarity/opposite sign ..... A1
10 (a) iron rod changes flux (density)/field ..... B1change of flux in coil $Q$ causes induced e.m.f.B1
(b) constant reading (either polarity) from time zero to near $t_{1}$ ..... B1
spike in one direction near $t_{1}$ clearly showing a larger voltage ..... M1
of opposite polarity ..... A1
zero reading from near $t_{1}$ to $t_{2}$ ..... B1
11 (a) point $P$ shown at 'lower end' of load ..... B1
(b) $V_{\text {r.m.s. }}=6.0 / \sqrt{ } 2=4.24 \mathrm{~V}$ ..... C1

$$
I_{\text {r.m.s. }}=4.24 /\left(2.4 \times 10^{3}\right)
$$

$$
=1.8 \times 10^{-3} \mathrm{~A}
$$ ..... A1

(c) (i) capacitor in parallel with loadB1
(ii) line from peak to curve at 3.0 V for either half- or full-wave rectified ..... M1
correct curvature on line (gradient becoming more shallow) ..... A1
line drawn as for full-wave rectifiedA1

| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - May/June 2016 | 9702 | 42 |

12 (a) (i) (X-ray) photon produced when electron/charged particle is stopped/accelerated (suddenly) ..... B1
range of accelerations (in target) ..... M1
hence distribution of wavelengths ..... A1
(ii) electron gives all its energy to one photon ..... B1 ..... B1
electron stopped in single collision
electron stopped in single collision ..... B1
(iii) de-excitation of (orbital) electrons in target/anode/metal
(iii) de-excitation of (orbital) electrons in target/anode/metal[1]
(b) (i) aluminium sheet/filter/foil (placed in beam from tube) ..... B1
(ii) (long wavelength X -rays) do not pass through the body ..... B1[1]
13 (a) (photons of) electromagnetic radiation ..... M1
emitted from nucleiA1
(b) line of best fit drawn ..... B1
recognises $\mu$ as given by the gradient of best-fit lineor$\ln C=\ln C_{0}-\mu x$B1
$\mu=0.061 \mathrm{~mm}^{-1}$ (within $\pm 0.004 \mathrm{~mm}^{-1}, 1$ mark; within $\pm 0.002 \mathrm{~mm}^{-1}, 2$ marks) ..... A2
(c) aluminium is less absorbing (than lead)
orgradient of graph would be lessM1
so $\mu$ is smaller ..... A1

